# การทำงานสำหรับ งานพื้นคอนกรีตอย่างถูกวิธี

# การบดอัดดิ**นรองพื้น**

ก่อนการก่อสร้างต้องทำการบดอัดดินให้แน่นเสียก่อน เพื่อไม่ให้เกิดปัญหาการทรุดตัวของพื้นที่เทตามมาในภายหลัง โดยการบดอัดสามารถทำได้หลายวิธีดังนี้



- การทำให้ดินแน่นทำโดยใช้แรงหรือน้ำหนักจาก เครื่องจักร
- 🔳 การกระทุ้งโดยใช้แรงคนด้วยสามเกลอ

ถ้าเป็นพื้นที่ที่มีบริเวณกว้าง การบดอัดดินทำได้โดยการ สั่นหรือเขย่าด้วยเครื่องตบและรถบดอัด น้ำในปริมาณ ที่พอเหมาะเป็นปัจจัยหนึ่งที่จะช่วยให้การบดอัดง่ายและ แน่นขึ้น รวมทั้งพลังงานที่ใช้ในการบดอัดจะต้องมาก พอและชนิดของเครื่องจักรต้องเหมาะสมกับสภาพดิน **โดยความหนาแน่นของการบดอัดดินต้องเป็นไปตาม มาตรฐานที่วิศวกรกำหนดไว้** หากพื้นคอนกรีตเป็น แนวขวางทางน้ำไหลต้องทำทางระบายน้ำก่อน การ บดอัดควรปรับระดับพื้นให้ลาดเอียงเล็กน้อยเพื่อ ระบายน้ำฝนที่ตกลงมา



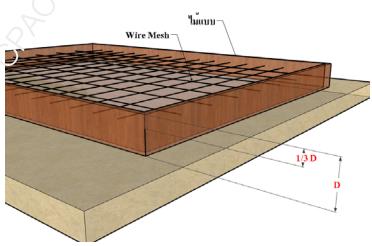
"การทำงานขึ้นดอนกรีต ไม่ว่า จมบื้นขึ้นดนน ขึ้นโรงงาน ดาน ดอนกรีตประเภทวางบนดินบดอัด (Slab on grade) จะต้องมีขั้นตอน การทำงานอย่างถูกต้อง เพื่อให้ได้ขึ้น ดอนกรีตที่ดวยงาม แข็งแรง ดามารถ ใช้งานได้ตามต้องการ"



# การ**ปูพดาสติกกันความชิ้น**



สำหรับโครงสร้างที่ต้องการป้องกันความชื้นจากดินขึ้น สู่พื้น โดยมากต้องทำการปูพลาสติกกันชื้น การปูพลาสติกควร ซ้อนกันอย่างน้อย 0.30 เมตร และมีกาวเชื่อมพลาสติกเพื่อทาบ ต่อกันให้สนิท โดยควรปูภายหลังการผูกเหล็กและก่อนเท คอนกรีต การปูจะต้องยกเหล็กให้ลอยขึ้นแล้วจึงกลิ้งม้วนไปแต่ ถ้าปูพลาสติกกันชื้นก่อน แล้วลงไปผูกเหล็กอาจทำให้พลาสติก ฉีกขาดได้ ส่วนความหนาและชนิดของพลาสติกกันชื้นให้เป็นไป ตามมาตรฐานที่วิศวกรแนะนำ


# การ**เตรียมแบบแ**ต่อ



ทำผิวของแบบให้เปียกหรือทาด้วยน้ำมันเสียก่อน เพื่อ ป้องกันการเกาะแบบ ควรทาน้ำมันก่อนการวางเหล็กเสริมเพราะ ถ้าน้ำมันถูกกับเหล็กเสริมจะเป็นการทำลายแรงยึดเหนี่ยวระหว่าง คอนกรีตกับเหล็กเสริม วิธีที่ดีเพื่อรักษาแบบไม้ให้แน่นและ ป้องกันการบิดงอคือให้แบบนั้นชุ่มน้ำอยู่ตลอดเวลาก่อนที่จะเท คอนกรีต ไม้ที่ยังสดเกินไปอาจจะหดตัวได้แต่ถ้าไม้นั้นแห้ง เกินไปอาจจะเกิดการงอหรือบิดเมื่อเปียก

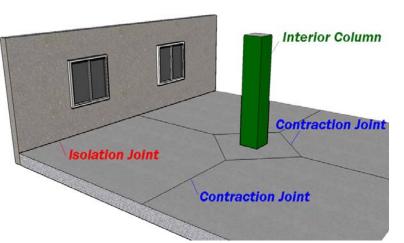
# เหล็กเสริม

การเสริมเหล็กมีวัตถุประสงค์เพื่อกันแตกร้าวจากการ เปลี่ยนแปลงปริมาตรคอนกรีตและเนื่องจากการเปลี่ยนแปลงของ อุณหภูมิ โดยเหล็กเสริมต้องมีขนาดไม่เล็กกว่า 6 มม. การเสริม เหล็กสำหรับการเทพื้นนั้น ควรมีการต่อทาบเหล็กให้น้อยที่สุด ส่วนการวางเหล็กให้นำเหล็กมายืดให้ตรงตัดให้เหล็กยาวตลอด ความกว้างของพื้น งอปลายทั้งสองหัวให้ห่างจากข้างแบบด้านใน ประมาณ 2 ซม. พาดเหล็กอีกด้านหนึ่งให้เหล็กตัดกันเป็น ตะแกรงตลอดทั้งพื้นที่ ทุกจุดที่เหล็กตัดผ่านกันให้ใช้ลวดผูก เหล็กผูกกันให้แน่น ถ้าจะดามต่อกันต้องหนาอย่างน้อย 40 เท่า ของเส้นผ่านศูนย์กลางเหล็ก ตำแหน่งของเหล็กเสริมควรอยู่ลึก จากผิวบนของพื้นไม่เกิน 1/3 ของความหนาพื้น (ดังแสดงใน ภาพ) เพื่อให้สามารถควบคุมความกว้างรอยแตกร้าวบนผิวหน้า คอนกรีตอย่างได้ผล ควรหนุนลูกปูนด้านล่างของเหล็ก เป็นช่วงๆ เพื่อป้องกันเหล็กตกลงด้านล่างขณะเทคอนกรีต

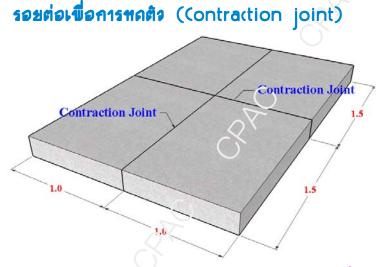


การใส่ตะแกรงเหล็กที่เหมาะสม ระดับเหล็กเสริมควรอยู่ ที่ระดับ 1/3 หรือ 1.5-2.0 นิ้ว จากผิวหน้าพื้นคอนกรีต

#### ข้อควรระวัง


 ในการกองเก็บเหล็กจะต้องเก็บไว้ในที่มีสิ่งรองรับกัน
ชื้น และมีสิ่งปกปิดกันฝนได้ สำหรับเหล็กที่ผูกไว้นานอาจเกิด สนิมขึ้นได้ ก่อนการเทคอนกรีตจึงควรที่จะขจัดสนิมออกให้มาก ที่สุด มิฉะนั้นอาจมีผลเสียต่อโครงสร้างคอนกรีตได้

 ปริมาณเหล็กที่ระบุข้างต้นเพื่อควบคุมการแตกร้าว คอนกรีตจากการเปลี่ยนแปลงปริมาตรจากอุณหภูมเท่านั้น กรณี ต้องรับแรงดัดควรให้วิศวกรออกแบบเป็นผู้พิจารณา






# รอยต่อ (Joint) ดำหรับพื้นคอนกรีต



รอยต่อของพื้นประเภทที่วางบนดิน (Slab on grade) จะต้องมีการทำรอยต่อในการก่อสร้างเป็นระยะๆ เพื่อป้องกัน ปัญหาการแตกร้าวของคอนกรีต เนื่องจากการเปลี่ยนแปลง ปริมาตรของคอนกรีต โดยปริมาตรของคอนกรีตที่เปลี่ยนแปลง มีสาเหตุมาจากการหดตัวของคอนกรีต (Drying shrinkage) และการเปลี่ยนแปลงปริมาตรจากอุณหภูมิ ซึ่งรูปแบบ โดยทั่วไปของรอยต่อ (Joint) ตามข้อแนะนำของ **ACI 302.1R** Guide for Concrete Floor and Slab Construction มีดังนี้



#### Contraction joint ควรมีอัตราส่วนด้านยาวต่อด้านสั้นไม่ เกิน 1.5 : 1.0

เมื่อน้ำในคอนกรีตระเหยออกไป คอนกรีตจะเกิดการ หดตัว ซึ่งการหดตัวแบบนี้จะทำให้คอนกรีตเกิดการแตกร้าวขึ้น ได้ รอยต่อเพื่อการหดตัวนี้ทำไว้เพื่อบังคับให้การแตกร้าวเกิด

ในตำแหน่งที่กำหนดให้เพื่อให้เป็นไปอย่างมีระเบียบ โดยทั่ว ไปควรทำ Contraction joint ที่ระยะห่างทุกๆ 24–35 เท่า ของความหนาแผ่นพื้น และแบ่งพื้นเป็นสี่เหลี่ยมชิ้นเล็กๆ โดย ให้อัตราส่วนด้านยาวต่อด้านสั้นไม่เกิน 1.5 : 1.0 ถ้าเป็นไปได้ ควรกำหนดเป็นสี่เหลี่ยมจตุรัส

เพื่อควบคุมให้รอยแตกร้าวอันเนื่องมาจากการหดตัวของ คอนกรีตให้อยู่ในตำแหน่งที่กำหนดไว้ จึงต้องกำหนด Contraction Joint ให้เป็นระยะๆ ทั้งแนวยาวและแนวขวาง โดยการทำ Contraction Joint ที่นิยมใช้กันคือวิธีตัดด้วย เลื่อย (saw joint) แต่จะต้องทำทันทีที่คอนกรีตแข็งตัว โดย ให้ความลึกของร่องตัดประมาณ 1/4 ของความหนาของแผ่นพื้น รอยต่อเพื่อการหดตัวนี้จะต้องใส่เหล็กถ่ายน้ำหนัก (Dowel bar) เพื่อถ่ายน้ำหนักระหว่างแผ่นพื้นและรอยต่อด้วย โดยเหล็กถ่าย น้ำหนักนี้จะเป็นเหล็กเส้นกลมซึ่งจะต้องชุบยางมะตอยหรือวัสดุ เคลือบหล่อลื่น (Lubricated) ที่ปลายข้างหนึ่งเพื่อให้คอนกรีต เคลื่อนตัวได้



การทำรอยต่อด้วยการใช้เลื่อยตัด (Sawed cut) หากรอย ตัดตื้นเกินไป รอยแตกจะเกิดแบบกระจายทั่วไป





### รอยต่อเพื่อการเคลื่อนตัวในแนวถึง (Isolation joint)



เป็นรอยต่อที่ทำขึ้นเพื่อให้โครงสร้างคอนกรีตส่วนแนวดิ่ง เช่น เสา ผนัง สามารถเลื่อนตัวอย่างอิสระจากโครงสร้างคอนกรีต ในแนวราบ เช่น พื้น เพื่อไม่ให้เกิดการยึดรั้งอันเป็นสาเหตุให้ เกิดการแตกร้าวของโครงสร้างในระยะยาว ส่วนวัสดุที่ใช้ทำรอย ต่อมักใช้วัสดุที่ไม่เปื่อยยุ่ยง่าย ที่นิยมใช้กันมักจะเป็นโฟมหรือ แผ่นยาง โดยจะหุ้มหรือกั้นด้วยวัสดุเหล่านี้ก่อนจะเทคอนกรีต

### วิธีการเทคอนกรีต



เทคอนกรีตทีละชั้นอย่างสม่ำเสมอไม่ลาดเอียง และไม่เทสุมเป็นกอง

ในการเทคอนกรีตควรเทให้ใกล้กับจุดที่ต้องการเท หลีกเลี่ยงการทำให้คอนกรีตเคลื่อนที่ในแนวราบ เช่น การใช้ เครื่องจี้เขย่าดันคอนกรีตให้เคลื่อนที่

คอนกรีตในแต่ละชั้น ควรได้รับการอัดแน่นก่อนที่จะเท ชั้นถัดไป และควรเทชั้นถัดไปในขณะที่ชั้นล่างยังไม่เริ่มก่อตัว อัตราการเท ควรเหมาะสมกับอัตราการอัดแน่นคอนกรีต
ระยะการตกอิสระของคอนกรีตจากตำแหน่ง
ปลายอุปกรณ์ที่ลำเลียงถึงพื้นที่จะเท ไม่ควรสูงเกิน 1.50
เมตร

# การจึเบย่าคอนกรีต

#### การอัดแน่นคอนกรีต

ผลของการอัดแน่นคอนกรีตที่ดี จะทำให้ได้คอนกรีต ที่มีเนื้อแน่นสม่ำเสมอ ไม่แยกตัว ไม่เป็นรูโพรง การยึดเหนี่ยว ที่ดีระหว่างเหล็กเสริมกับคอนกรีต และระหว่างคอนกรีตชั้นต่างๆ มีรอยแตกร้าวน้อยที่สุด มีผิวเรียบสม่ำเสมอ ไม่มีรอยตำหนิ มีกำลังความคงทนและมีอายุใช้งานได้นาน

โดยปกติถ้าไม่มีการอัดแน่นคอนกรีตสดภายหลังการเท จะทำให้เกิดรูโพรงและช่องว่างอากาศขึ้น เมื่อคอนกรีตแข็งตัว แล้วจะมีเนื้อไม่สม่ำเสมอ มีกำลังต่ำ มีความพรุนสูง มีความทึบ น้ำต่ำ มีแรงยึดเหนี่ยวกับเหล็กเสริมต่ำ มีความคงทนต่ำ และ มีผิวไม่สวยงาม โดยวิธีการใช้เครื่องจี้เขย่าคอนกรีตที่ถูกต้องควร ปฏิบัติดังนี้

### ตำแหน่งและระยะห่างในการจุ่มหัวจี้

ควรกำหนดระยะห่างการจี้ที่เหมาะสม เพื่อให้คอนกรีต ทุกบริเวณในแบบหล่อได้รับการอัดแน่น ระยะห่างในการจุ่มหัว จี้ขึ้นอยู่กับขนาดของหัวจี้และรัศมีทำการ หรือระยะห่างจากหัว จุ่มที่คอนกรีตสดยังสามารถได้รับการอัดแน่นเป็นอย่างดี ทิศทางการจุ่มหัวจี้

ควรจุ่มหัวจี้ในแนวดิ่งลงไปตลอดความลึกของชั้นการเท คอนกรีตสด และทะลุผ่านถึงชั้นการเทชั้นล่างซึ่งยังไม่เริ่มก่อตัว เพื่อให้เนื้อคอนกรีตทั้งสองชั้นเชื่อมเป็นเนื้อเดียวกัน ระยะเวลาการจุ่มหัวจี้

เวลาในการจี้เขย่าที่เหมาะสมเพื่อให้คอนกรีตได้รับการ อัดแน่นเป็นอย่างดี สังเกตได้จากพฤติกรรมของคอนกรีตสดใน ขณะจี้เขย่า อาทิ การจมลงของหินเม็ดใหญ่, จี้เขย่าจนผิวหน้า คอนกรีตได้ระดับหรือมีลักษณะเรียบ, เกิดฟิล์มของมอร์ต้าร์ บางๆ บนผิวหน้าคอนกรีต, สังเกตเห็นซีเมนต์เพสต์บริเวณรอย





ต่อระหว่าคอนกรีตกับแบบหล่อ และไม่สังเกตเห็นฟองอากาศ ขนาดใหญ่ลอยขึ้นมาที่ผิวหน้าอีกต่อไป โดยปกติการจี้เขย่าจะให้ ผลที่ต้องการภายใน 5 - 15 วินาที

### การถอนหัวจี้กลับขึ้นมา

เมื่อจี้เขย่าแล้วเสร็จควรถอนหัวจี้กลับขึ้นมาอย่างช้าๆ เพื่อให้ช่องเปิดที่เกิดจากการใช้หัวจี้ปิดตัวเองได้สนิทไม่มีฟอง อากาศขังอยู่

## การตกแต่งผิวหน้าคอนกรีต



📃 ต้องทำในขณะที่คอนกรีตยังไม่แข็งตัวหรือยังหมาดอยู่

ใช้เกรียงหรือไม้ปาดแต่งผิว ปาดคอนกรีตส่วนที่นูนขึ้น มากลบส่วนที่เป็นแอ่ง

หากมีน้ำปูนเยิ้มขึ้นมาที่ผิวหน้ามาก อาจดูดซับน้ำออก
ด้วยฟองน้ำหรือกระสอบ

ไม่ควรโรยผงซีเมนต์หรือปูนทรายลงบนผิวหน้าเพื่อดูด ชับน้ำออก เพราะอาจทำให้ผิวหน้ากะเทาะหรือเกิดรอยแตกลาย งาเนื่องจากการหดตัวของคอนกรีต

การแต่งผิวหน้าให้ขรุขระให้ใช้ไม้กวาดหรืออุปกรณ์ สำหรับขูดผิวหน้าตกแต่งเมื่อคอนกรีตเริ่มแข็งตัว

## การบ่มคอนกรีต

การบ่มคอนกรีต (Curing) คือวิธีการที่ช่วยให้ ปฏิกิริยาไฮเดรชั่นของปูนซีเมนต์เกิดขึ้นอย่างสมบูรณ์ ซึ่งจะส่งผลทำให้การพัฒนากำลังของคอนกรีตเป็นไป อย่างต่อเนื่อง วิธีการบ่มอาจทำได้โดยการให้น้ำแก่คอนกรีตหลัง จากที่ คอนกรีตเริ่ม แข็งตัวแล้วและควร บ่มต่อไปจนกระทั่งคอนกรีตมีกำลังตามต้องการ โดย วัตถุประสงค์ที่สำคัญของการบ่มคอนกรีตคือการทำ ให้คอนกรีตมีการพัฒนาคุณสมบัติด้านกำลังและความ คงทน อีกทั้งยังช่วยป้องกันการแตกร้าวของคอนกรีต ในช่วงอายุเริ่มแรกด้วยการรักษาระดับอุณหภูมิ ให้เหมาะสมและลดการระเหยของน้ำให้น้อยที่สุด ซึ่ง การบ่มสามารถทำได้หลายวิธี เช่น การขังน้ำ การฉีดน้ำให้ชุ่ม หรืออาจคลุมด้วยกระสอบเปียก โดยควรทำการบ่มอย่างน้อย 7 วัน ติดต่อกันเพื่อป้องกันน้ำจากเนื้อคอนกรีตระเหยออก เร็วเกินไป



วิธีการบ่มด้วยกระสอบเปียกแล้วฉีดน้ำให้ชุ่ม



**วิธีการบ่มด้วยการขังน**้ำ





### 6

# รอยร้าวที่มีกุจมกิดกับพื้นคอนกรีต

รอยร้าวบนพื้นคอนกรีตเป็นสิ่งที่เกิดขึ้นได้เสมอ รอยร้าว ที่เกิดขึ้นบางครั้งแม้อาจไม่เป็นอันตรายแต่ก็จะทำให้ขาดความ สวยงามได้ รอยร้าวที่มักเกิดขึ้นเสมอๆ กับงานพื้นคอนกรีต ได้แก่

### รอยร้าวเกิดจากการพดติวของคอนกรีตในขณะ ก่อติว (Plastic Shrinkage (rack)



ลักษณะการแตกร้าวแบบพลาสติก

การแตกร้าวแบบพลาสติกเป็นลักษณะของรอยแตกร้าว ที่พบเห็นมากที่สุดแบบหนึ่งในช่วงหน้าร้อน ส่วนมากมักเกิดใน การเทพื้นหรือถนนคอนกรีต รอยแตกเหล่านี้มักจะเกิดบนผิว หน้าของคอนกรีตที่เพิ่งเทเสร็จใหม่ๆ และมักจะปรากฏเป็นแนว เส้นตรงโดยไม่มีรูปแบบที่แน่นอน สาเหตุเกิดจากการระเหยของ น้ำจากผิวหน้าคอนกรีตที่เปิดโล่งสัมผัสกับอากาศเป็นบริเวณกว้าง สภาวะเช่นนี้จะเกิดขึ้นถ้าผิวหน้าของคอนกรีตไม่ได้รับการบ่มหรือ การป้องกันหลังจากการเทคอนกรีต การระเหยของน้ำบริเวณผิว คอนกรีตจะทำให้ปริมาตรคอนกรีตบริเวณผิวบนของคอนกรีต ลดลงทำให้เกิดการยึดรั้งภายในของคอนกรีต ส่งผลทำให้ คอนกรีตเกิดการแตกร้าวได้

ส่วนวิธีการป้องกันสามารถทำได้โดยการคลุมด้วย กระสอบเปียกหรือใช้แผ่นพลาสติกคลุมทันทีที่ทำได้ หรืออาจ เพิ่มความชื้นให้ผิวหน้าคอนกรีตโดยรักษาผิวหน้าให้เปียก โดยการพ่นฝอยน้ำให้ชื้นตลอดเวลากระทั่งคอนกรีตเริ่มแข็งตัว หรือระยะเวลาการก่อตัวสุดท้าย (Final Set) ถ้าสังเกตเห็น ว่าคอนกรีตเริ่มเกิดรอยแตกร้าวแบบพลาสติกก่อนที่ คอนกรีตจะเริ่มเข้าสู่เวลาการก่อตัวเริ่มต้น (Initial Set) สามารถ ขจัดรอยแตกร้าวได้ด้วยการจี้เขย่าคอนกรีตบริเวณนั้น แล้วทำการตกแต่งผิวหน้าคอนกรีตอีกครั้งหนึ่ง

### รอยร้าวที่เกิดจากการทดตัวแบบแห้ง (Drying Shrinkage (rack)

การแตกร้าวเนื่องจากการหดตัวแบบแห้งมีลักษณะเช่น เดียวกับการเกิดรอยแตกร้าวแบบพลาสติก จะแตกต่างกันตรง ช่วงเวลาการเกิดเท่านั้น โดยการแตกร้าวแบบพลาสติกจะเกิด ในช่วงที่คอนกรีตยังไม่แข็งตัวและสามารถแก้ไขได้ง่ายโดยการ ตกแต่งผิวหน้าคอนกรีตใหม่ก่อนที่คอนกรีตจะแข็งตัว ส่วน การแตกร้าวที่เกิดจากการหดตัวแบบแห้งจะเกิดหลังจากที่ คอนกรีตแข็งตัวแล้วซึ่งไม่สามารถจะตกแต่งผิวใหม่ได้แล้ว มัก พบในการเทพื้นคอนกรีตที่มีการใช้ปริมาณน้ำมากเกินความ จำเป็น เช่น การเติมน้ำที่หน้างานเพื่อให้ทำงานง่าย เมื่อเวลาผ่าน ไปน้ำที่อยู่ในคอนกรีตได้สูญเสียไปไปสู่บรรยากาศแวดล้อม ทำให้ คอนกรีตเกิดการเปลี่ยนแปลงปริมาตรหรือการหดตัวลง เมื่อ คอนกรีตถูกยึดรั้งก็จะทำให้เกิดการแตกร้าวขึ้น



ลักษณะการแตกร้าวจากการหดตัวแบบแห้ง

ส่วนวิธีการป้องกันสามารถทำได้โดย การเลือกใช้ค่ายุบ ตัวของคอนกรีตให้เหมาะสม, ไม่เติมน้ำให้กับคอนกรีตที่หน้างาน อีก, การบ่มและการทำรอยต่อคอนกรีตอย่างถูกต้อง และเหมาะสม



